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Abstract—In this paper we explore the correlation between
Convolutional Neural Network (CNN) architectures with random
weights in the convolutional layers to the same architectures
with trained weights. We show that this correlation extends to
deep CNN architectures of up to 10 or even 12 layers to the
extent that untrained model accuracy could be a useful proxy
for trained model accuracy. We also find that for models with
fewer layers much of this relationship comes from the strong
correlation between the number of features output from the final
CNN layer and final accuracy. With 10 and 12 layers there is a
moderate correlation even when the size of the fully connected
layer is held constant. We anticipate our findings in extending
these correlations to deeper networks will be useful in designing
faster Neural Architecture Search (NAS) models. Analytically
solving for the weights of the final prediction layer is orders of
magnitude faster than training the weights via backpropagation

Index Terms—Neural Networks, Convolutional Neural Net-
works, Neural Architecture Search, NAS, random features

I. INTRODUCTION

A large body of previous work has shown that leaving the
weights of a neural network (NN) untrained and just solving
the final prediction layer can result in strong performance that
correlates well with an equivalent fully trained NN. The benefit
is significantly lower training time. [1] left the weights from
the hidden layer feed forward NN untrained and solved for
the weights of the final classification layer using the Fisher
solution. They showed performance comparable to the same
models trained with backpropagation on synthetic datasets. [2]
did the same again but solved for the weights of the final
layer using a minimum norm least squares approach. They
demonstrated performance comparable with support vector
machine (SVM) models on house price prediction and medical
imaging datasets.

The tendency of the weights from the directly solved
solution to over-fit to the training set was identified in [3].
A regularised version of the minimum norm least squares
approach was proposed which produced better performance
than SVMs on a range of classification tasks. An alternative
to inverting the large feature matrix for large numbers of
training examples was also proposed. [4] reported that sin-
gle layer convolutional architectures with random, untrained

weights perform very well, compared to single layer CNNs
on object recognition tasks. The authors also showed that a
strong relationship exists between the accuracy of the trained
architecture and the accuracy of the untrained equivalent. They
suggested that this relationship could be used as a form of fast
architecture search.

Neural Architecture Search (NAS) models [5] have pro-
duced results comparable to the top human performance for
predicting the design features of the best deep NN architecture
to solve a particular task. The original model from [5] was run
on 800 gpus for 28 days making it out of reach for all but the
largest research organisations. So focus has turned to finding
good proxies to quickly predict the accuracy of large fully
trained models [6] [7]

[8] successfully applied a heuristic with a moderate corre-
lation to the trained accuracy in a NAS implementation. They
showed that even this moderate correlation is likely to indicate
an effective proxy.

Our paper extends [4] to include architectures with multiple
convolutional layers. We define a Random Feature Model
(RFM) to be a model with N untrained convolutional layers
and a single classification layer that is solved analytically
similar to [3]. The use of the term RFM is purely for simplicity
and does not imply a newly created or novel technique.

Our paper shows how the correlation between the accuracy
of RFMs and the equivalent trained model changes as the
number of layers in a deep CNN are increased and other
factors are taken into account. We make two contributions
which show that:

1) The correlation remains as strong up to a 9 layer CNN
(Pearson correlation of 0.746594) and even though it
drops off at 11 layers (Pearson correlation of 0.527108)
it is still strong enough to be useful as a proxy for trained
accuracy.

2) The correlation is highly dependent on the number
of features output from the final CNN layer, and this
relationship should be considered when relying on the
correlation between an RFM and equivalent trained
model.
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Since RFM architectures are orders of magnitude quicker
to evaluate, correlation between the RFM accuracy and the
trained equivalent could be useful in the context of Neural
Architecture Search (NAS).

II. BACKGROUND

A. Random convolutional architectures

[4] sample 11 different single layer convolutional archi-
tectures, each parameterised by 4 variables; filter size 4x4,
8x8,12x12, 16x16, pooling size 3x3, 5x5, 9x9 and filter stride
1, 2. The authors plotted the classification performance of
each random-weight architectures against the trained weight
equivalent. The random weights architectures used a linear
support vector machine (SVM) to perform classification and
the trained architecture used a pre-trained and fine-tuned
approach. The authors observed that the architectures that
performed well with random weights also tended to perform
well with trained weights. They go on to suggest that the
relationship between the accuracy of the random weight ar-
chitecture and its trained equivalent model can be used as a
form of fast architecture search.

B. Analytical Solutions to Classification Layer Weights

[1] [9] [2] used analytical methods for finding the weights
of a final classification layer in an otherwise random weight
neural network. [2] found the weights using an ordinary
least squares approach. If H is the matrix formed by feeding
each training example through the randomised part of the
network and T is the matrix of targets (assuming a multi-class
classification problem) . Then the weights of the final layer
can be found by solving the following system for β:

Hβ = T (1)

Solving for β we have:

β = H+T (2)

Where H+ is the Moore Penrose Psuedo Inverse of the matrix
H . Huang extended the above to a regularised version:

β =
(
λI +HTH

)−1
HTT (3)

The regularised version has been shown to improve generali-
sation to unseen data [3].

III. METHOD

A. General method

1) Define a search space
2) Randomly sample candidate models from that search

space
3) Train candidates models for 10 epochs
4) Construct and solve an RFM from the candidate archi-

tecture
5) Record the validation accuracy that is achieved by both

the RFM and trained model

B. Data set and preprocessing

CIFAR-10 [10] image dataset is used for the experiment.
The provided split of 50000 training examples and 10000 test
examples is used. Unlike [4] the images are not converted to
black and white since we are interested in finding architectures
that perform well on the colour images. We use a pre-
processing scheme, similar to [5] since these steps have been
shown to give top results on the CIFAR-10 dataset. For each
image:

1) the image is padded by 4 pixels and a random 32*32
crop is sampled

2) random horizontal flips are performed
3) the image is normalised using the mean (0.4914, 0.4822,

0.4465) and standard deviation of each channel (0.2023,
0.1994, 0.2010)

C. Architecture Search Space

We perform five distinct correlation experiments for net-
works of varying numbers of layers. Experiments are con-
ducted for networks 3, 5, 7, 9 and 11 convolutional layers.
Each convolutional layer that is sampled is described by
two variables, convolutional filter size, chosen from 3, 5 and
multiplier, chosen from 1, 1.25, 1.5. The multiplier describes
how many features are output from the convolution operation
by applying the following rule:

output feature maps = input features maps * multiplier
(4)

The number of feature maps output from the initial convolution
operation is set to 24. Modern architectures such as [11]
will often use 64; we scale this down to match the relative
complexity of the architectures being sampled. We note here
that the resulting models do not have an equal number of
parameters and this is also true of the initial experiment [4].
Given that the total number of unique convolutional layer
configurations is 6, there are 6n unique architectures, where n
is the number of layers sampled. The simplified search space
also did not include depthwise separable convolutions [15], or
non-square filter dimensions [5] which have been shown to
produce top results. This allowed us to test purely whether
correlations between CNN models with trained and untrained
weights extend to deeper models without other complexities
affecting the results.

TABLE I
PARAMETER SETTINGS

Param Value
Momentum 0.9

Weight decay 0.00004
Learning Rate Cosine annealing Max 0.1, Min 0.001

Batch Size 32

D. Constructing the Network

A neural network is constructed for each sampled model,
with the filter sizes and number of feature maps being de-
termined by the sampled architecture string. Additionally, 2
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TABLE II
CORRELATION RESULTS – TRAINED VS RANDOM FEATURES

Depth Pearson coefficient Spearman coefficient
3 0.664021 0.675301
5 0.70894 0.715277
7 0.709527 0.699675
9 0.746594 0.73908

11 0.527108 0.585333
aAll values are statistically significant.

max pooling layers are placed into each network at even
spacing. Each “convolutional layer” as we describe it in this
paper is actually a block of convolution → ReLU → batch
normalisation. Along with the limitations in the search space
no modern architectural design complexities such as skip
connections, dropout, auxiliary head etc generally used in deep
CNNs were included. This and the search space limitations
allowed a straightforward answer to the question of ”does the
relationship between CNN models with untrained and trained
weights hold as the number of layers increases?”. We do
not think this limits the comparison within the scope of this
work, but it does mean that the final accuracy cannot be fully
compared with other modern results.

E. Classification with the RFM

The weights of the final classification layers are computed
using equation 3:

β =
(
λI +HTH

)−1
HTT (5)

H is the matrix formed by feeding each training example
through the randomised part of the network, T is the matrix
of targets, β is the weight matrix that is being solved and λ is
a user defined regularisation constant. λ is optimised against
a validation set of 5000, taken from the test set. An optimal
value of 0.7 was found and this value was used for all other
experiments.

For each of the sampled architectures, three random initial-
isations are used and the results on the test set are averaged.
For each RFM that is sampled, the corresponding CNN is
constructed and trained for 10 epochs using back-propagation.
The hyper parameters that are used are consistent with those
used in [5] and are listed in Table 1.

IV. RESULTS AND DISCUSSION

A. Correlation results

Figures 2 & 3 along with Table II show there is still a
strong correlation between the accuracy from the RFM models
and trained models when the numbers of CNN layers are
increased to 7 and 9. The Pearson and Spearman correlations
are 0.71 and 0.74 respectively. In figure 4, when the number of
CNN layers is increased to 11 the correlation becomes more
moderate at 0.52. As per [8] a moderate correlation means it
is still likely to be a useful proxy for fast architecture search.

We trained to convergence the models with the top 5
predicted accuracies from both the 10 epoch and RFM models
for 9 and 11 convolutional blocks. Table III reports the average

and standard deviation of these results. While the average
accuracies for the 10 epoch and RFM models are very similar
the standard deviation for the RFM models are over twice as
high. This indicates that using RFM as a heuristic for fully
trained models results in a noisier estimate.

The accuracy of the 11 convolutional block model being
lower than the 9 convolutional block model shows the limita-
tions of not including modern architectural design features.
A particular limitation is that as per [12] [11] [13] the
modern architectures that produce the best results on CIFAR
10 follow the general rule of doubling the number of feature
maps when the spatial size of the feature maps is halved
to remove representational bottlenecks whereas our models
do not follow this rule. In our models we include 2 evenly
spaced downsampling layers in each model no matter how
many convolutional blocks we have. While this limitation
does reduce the best final accuracies that can be produced
by the models we have found no reason to think it affects the
comparison between the trained vs the RFM models.

45 50 55 60 65
trained accuracy

17.5

20.0

22.5

25.0

27.5

30.0

32.5

35.0

37.5

RF
M

 a
cc

ur
ac

y

Fig. 1. RFM accuracy as a percentage (y axis) compared to trained accuracy
(x axis) for a model with 5 convolutional layers (6 layers total)

TABLE III
TOP FINAL FULLY TRAINED RESULTS

Depth Top 5 by 10 epoch accuracy by RFM accuracy
9 85.23±0.4% 84.75±0.87%
11 84.55±0.46% 83.62±1.23%

TABLE IV
CORRELATION RESULTS - FINAL LAYER SIZE VS ACCURACY

Depth Spearman coefficient trained Spearman coefficient RFM
3 0.912154 0.726757
5 0.916082 0.744238
7 0.900444 0.697415
9 0.872316 0.715059

11 0.26569 0.593903
aAll values are statistically significant.
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Fig. 2. RFM accuracy as a percentage (y axis) compared to trained accuracy
(x axis) for a model with 7 convolutional layers (8 layers total)
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Fig. 3. RFM accuracy as a percentage (y axis) compared to trained accuracy
(x axis) for a model with 9 convolutional layers (10 layers total)
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Fig. 4. RFM accuracy as a percentage (y axis) compared to trained accuracy
(x axis) for a model with 11 convolutional layers (12 layers total)

B. Correlation with constant feature size

We additionally calculate the Spearman coefficient between
the validation accuracy and the size of the final classification
layer, the results are recorded in Table IV.

We observe that the accuracy of both the RFM and 10 epoch
trained models correlates very strongly with the final layer
size.

The first thing to note is that the correlations between final
layer size and accuracy are far higher for models with a smaller
number of layers than a greater number. This seems to indicate
that the models with less layers are underfitting the data and
thus perform better with more features (a larger final layer
size). Whereas for the models with a higher number of layers
the correlation is roughly the same as or even lower than the
correlation between the trained and RFM model.

We now aim to determine if a correlation exists when the
size of the final layer is held constant. We know that both the
RFMs and our partially trained models perform well when
the final layer is large. But are RFMs a useful proxy for
finding good architectures when the final layer size is held
constant? In order to answer this question we calculate the
correlation amongst models with a similar final layer size. For
each network depth (5, 7, 9, 11), we group the models into 20
evenly spaced bins and calculate the correlation within these
groups. The results are shown in Table V

TABLE V
CORRELATIONS TRAINED VS RFM WITHIN SAME FINAL

LAYER SIZE

Layers-(Final Layer Size Range] Pearson Spearman
11 - (3033.6, 3507.2] 0.358299 0.297166
11 - (1612.8, 2086.4] 0.321455 0.339726
11 - (182.528, 665.6] 0.526462 0.517113
9 - (1660.8, 1824.0] 0.393931 0.467433

9 - (681.6, 844.7] 0.408181 0.410049
9 - (188.7, 355.2] 0.288102 0.288102

7 - (1142.4, 1248.0] 0.354627 0.27737
7 - (614.4, 720.0] 0.317162 0.331108
7 - (403.2, 508.8] 0.207533 0.220077
5 - (806.4, 857.6] 0.20966 0.275019
5 - (499.2, 550.4] 0.279318 0.201833

5 - (190.976, 243.2] 0.0694111 0.0636323

It can be seen from table V that for 5-9 convolutional blocks
the correlation between the RFM and trained accuracy is much
higher with a larger number of features. However with 11
layers the correlation reduces slightly for a larger number of
features. This indicates that the model is underfitting with a
smaller number of layers and that 11 convolutional blocks
is a reasonable size for this task. Both table V and figures
5 to 8 show that while all the Final Classification layer
(FC) sizes shown for 9 and 11 convolutional blocks have a
significant correlation, the smaller FC layer sizes for 5 and
7 convolutional blocks do not. Again leading us to conclude
that 9 and 11 convolutional blocks is a better size for this
problem. The fact that the correlation is still strong for these
sized models makes the RFM a useful proxy for trained model
accuracy for the CIFAR 10 classification problem.
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Fig. 5. RFM accuracy as a percentage (y axis) compared to trained accuracy
(x axis) for a model with 5 convolutional layers (6 layers total) with low,
medium and high fully conenected layer size
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Fig. 6. RFM accuracy as a percentage (y axis) compared to trained accuracy
(x axis) for a model with 7 convolutional layers (8 layers total) with low,
medium and high fully connected layer size

C. Discussion

We conclude from our results that our original questions of
”does the relationship between CNN models with untrained
and trained weights hold as the number of layers increases?”
and ”can an RFM model be a useful proxy for trained
models?” can be answered affirmatively. Care is needed when
relying on these correlations to make sure the models being
compared are an adequate size, and not underfitting, so that
the correlation does not come mostly from the FC layer size.

We conclude that a correlation of over 0.5 for a model
size that is reasonable for this task shows the potential of
RFMs to be used as a heuristic to test architectures that are
relevant to modern tasks. Additional limitations that may be
uncovered if the comparison is expanded to more complex
modern architectures in future work.
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Fig. 7. RFM accuracy as a percentage (y axis) compared to trained accuracy
(x axis) for a model with 9 convolutional layers (10 layers total) with low,
medium and high fully connected layer size

45 50 55 60 65 70
trained accuracy

15.0

17.5

20.0

22.5

25.0

27.5

30.0

RF
M

 a
cc

ur
ac

y

binned_fc
(182.528, 665.6]
(1612.8, 2086.4]
(3033.6, 3507.2]

Fig. 8. RFM accuracy as a percentage (y axis) compared to trained accuracy
(x axis) for a model with 11 convolutional layers (12 layers total) with low,
medium and high fully connected layer size

V. CONCLUSION AND FUTURE WORK

This paper has quantified the correlation between deep
CNNs with random weights and the trained equivalent models
and found a strong correlation for up to 9 CNN layers. The
correlation was still moderate when the number of layers was
increased to 11. When the correlation is performed among
models with the same size fully connected layer the correlation
is considerably weaker, particularly with more shallow models.
We conclude that the observed strong correlation appears to
be in part because both RFMs and the trained models perform
better when the number of inputs into the final classification
layer is high. This is particularly the case with shallow models
that are more likely to be underfitting. Caution should be
used in consider an RFM as a proxy for a trained model
in these cases. A moderate correlation within the same size
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fully connected groups was still present across all groups
analysed for the deeper models. [8] successfully applied a
heuristic with a moderate correlation to the trained accuracy in
a NAS implementation so there is evidence that random feature
models are worth exploring as a proxy for trained models to
reduce the cost of evaluating candidate architectures.

A limitation of this work is that the search space and CNN
architecture are relatively simple so the results so far do not
compare to the state of the art on CIFAR 10. Additional
research is needed to determine if the observed correlation still
holds when the search space is expanded to include modern
state of the art architectural features.
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